Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain Behav Immun ; 117: 456-470, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38336024

RESUMEN

Obesity has reached pandemic proportions and is a risk factor for neurodegenerative diseases, including Alzheimer's disease. Chronic inflammation is common in obese patients, but the mechanism between inflammation and cognitive impairment in obesity remains unclear. Accumulative evidence shows that protein-tyrosine phosphatase 1B (PTP1B), a neuroinflammatory and negative synaptic regulator, is involved in the pathogenesis of neurodegenerative processes. We investigated the causal role of PTP1B in obesity-induced cognitive impairment and the beneficial effect of PTP1B inhibitors in counteracting impairments of cognition, neural morphology, and signaling. We showed that obese individuals had negative relationship between serum PTP1B levels and cognitive function. Furthermore, the PTP1B level in the forebrain increased in patients with neurodegenerative diseases and obese cognitive impairment mice with the expansion of white matter, neuroinflammation and brain atrophy. PTP1B globally or forebrain-specific knockout mice on an obesogenic high-fat diet showed enhanced cognition and improved synaptic ultrastructure and proteins in the forebrain. Specifically, deleting PTP1B in leptin receptor-expressing cells improved leptin synaptic signaling and increased BDNF expression in the forebrain of obese mice. Importantly, we found that various PTP1B allosteric inhibitors (e.g., MSI-1436, well-tolerated in Phase 1 and 1b clinical trials for obesity and type II diabetes) prevented these alterations, including improving cognition, neurite outgrowth, leptin synaptic signaling and BDNF in both obese cognitive impairment mice and a neural cell model of PTP1B overexpression. These findings suggest that increased forebrain PTP1B is associated with cognitive decline in obesity, whereas inhibition of PTP1B could be a promising strategy for preventing neurodegeneration induced by obesity.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Diabetes Mellitus Tipo 2 , Animales , Humanos , Ratones , Factor Neurotrófico Derivado del Encéfalo , Inflamación , Leptina , Obesidad/complicaciones
2.
Behav Brain Res ; 463: 114885, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38296202

RESUMEN

The main cause of second-generation antipsychotic (SGA)-induced obesity is considered due to the antagonism of serotonin 2c receptors (5-HT2cR) and activation of ghrelin receptor type 1a (GHSR1a) signalling. It is reported that 5-HT2cR interacted with GHSR1a, however it is unknown whether one of the SGA olanzapine alters the 5-HT2cR/GHSR1a interaction, affecting orexigenic neuropeptide signalling in the hypothalamus. We found that olanzapine treatment increased average energy intake and body weight gain in mice; olanzapine treatment also increased orexigenic neuropeptide (NPY) and GHSR1a signaling molecules, pAMPK, UCP2, FOXO1 and pCREB levels in the hypothalamus. By using confocal fluorescence resonance energy transfer (FRET) technology, we found that 5-HT2cR interacted/dimerised with the GHSR1a in the hypothalamic neurons. As 5-HT2cR antagonist, both olanzapine and S242084 decreased the interaction between 5-HT2cR and GHSR1a and activated GHSR1a signaling. The 5-HT2cR agonist lorcaserin counteracted olanzapine-induced attenuation of interaction between 5-HT2cR and GHSR1a and inhibited activation of GHSR1a signalling and NPY production. These findings suggest that 5-HT2cR antagonistic effect of olanzapine in inhibition of the interaction of 5-HT2cR and GHSR1a, activation GHSR1a downstream signaling and increasing hypothalamic NPY, which may be the important neuronal molecular mechanism underlying olanzapine-induced obesity and target for prevention metabolic side effects of antipsychotic management in psychiatric disorders.


Asunto(s)
Antipsicóticos , Neuropéptidos , Animales , Ratones , Antipsicóticos/efectos adversos , Hipotálamo/metabolismo , Neuronas/metabolismo , Neuropéptidos/metabolismo , Obesidad/inducido químicamente , Obesidad/metabolismo , Olanzapina/efectos adversos
3.
Women Health ; 64(2): 94-108, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38151762

RESUMEN

We examined the association between postdiagnostic aspirin use and recurrence and disease-specific mortality among women with breast cancer in a meta-analysis. The PubMed, Embase, and Web of Science databases were searched to identify observational studies with longitudinal follow-ups according to the aim of the meta-analysis. Combining the results was achieved using a random-effects model that included inter-study heterogeneity. Fifteen cohort studies with 131,636 women with breast cancer were included. Based on a meta-analysis, women who took aspirin after being diagnosed with breast cancer had a lower risk of breast cancer recurrence (adjusted risk ratio [RR]: 0.77, 95 percent confidence interval [CI]: 0.63 to 0.95, P = .02; I2 = 72 percent) and breast cancer specific mortality (adjusted RR: 0.73, 95 percent CI: 0.60 to 0.90, P = .004; I2 = 80 percent) than those who did not use aspirin. The certainty of the evidence was rated using the Grading of Recommendations Assessment, Development, and Evaluations scoring system showed moderate certainty for both the outcomes because significant inconsistency was observed. In conclusion, aspirin use after diagnosis might be associated with reduced recurrence and disease-specific mortality in women with breast cancer.


Asunto(s)
Aspirina , Neoplasias de la Mama , Femenino , Humanos , Aspirina/uso terapéutico , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/tratamiento farmacológico , Estudios de Cohortes , Mama
4.
Molecules ; 28(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37570746

RESUMEN

MXene, a new intercalation pseudocapacitive electrode material, possesses a high theoretical capacitance for supercapacitor application. However, limited accessible interlayer space and active sites are major challenges to achieve this high capacitance in practical application. In order to stimulate the electrochemical activity of MXene to a greater extent, herein, a method of hydrothermal treatment in NaOH solution with reducing reagent-citric acid is first proposed. After this treatment, the gravimetric capacitance of MXene exhibits a significant enhancement, about 250% of the original value, reaching 543 F g-1 at 2 mV s-1. This improved electrochemical performance is attributed to the tailoring of an interlayer structure and surface chemistry state. An expanded and homogenized interlayer space is created, which provides enough space for electrolyte ions storage. The -F terminations are replaced with O-containing groups, which enhances the hydrophilicity, facilitating the electrolyte's accessibility to MXene's surface, and makes MXene show stronger adsorption for electrolyte ion-H+, providing sufficient electrochemical active sites. The change in terminations further leads to the increase in Ti valence, which becomes more prone to reduction. This work establishes full knowledge of the rational MXene design for electrochemical energy storage applications.

5.
Molecules ; 28(13)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37446554

RESUMEN

Heteroatom doping is considered an effective method to substantially improve the electrochemical performance of Ti3C2Tx MXene for supercapacitors. Herein, a facile and controllable strategy, which combines heat treatment with phosphorous (P) doping by using sodium phosphinate (NaH2PO2) as a phosphorus source, is used to modify Ti3C2Tx. The intercalated ions from NaH2PO2 act as "pillars" to expand the interlayer space of MXene, which is conducive to electrolyte ion diffusion. On the other hand, P doping tailors the surface electronic state of MXene, optimizing electronic conductivity and reducing the free energy of H+ diffusion on the MXene surface. Meanwhile, P sites with lower electronegativity owning good electron donor characteristics are easy to share electrons with H+, which is beneficial to charge storage. Moreover, the adopted heat treatment replaces -F terminations with O-containing groups, which enhances the hydrophilicity and provides sufficient active sites. The change in surface functional groups increases the content of high valence-stated Ti with a high electrochemical activity that can accommodate more electrons during discharge. Synergistic modification of interlayer structure and chemical state improves the possibility of Ti3C2Tx for accommodating more H+ ions. Consequently, the modified electrode delivers a specific capacitance of 510 F g-1 at 2 mV s-1, and a capacitance retention of 90.2% at 20 A g-1 after 10,000 cycles. The work provides a coordinated strategy for the rational design of high-capacitance Ti3C2Tx MXene electrodes.


Asunto(s)
Líquidos Corporales , Titanio , Difusión , Fósforo
7.
J Clin Invest ; 133(4)2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36787221

RESUMEN

Obesity is a risk factor for neurodegenerative disease associated with cognitive dysfunction, including Alzheimer's disease. Low-grade inflammation is common in obesity, but the mechanism between inflammation and cognitive impairment in obesity is unclear. Accumulative evidence shows that quinolinic acid (QA), a neuroinflammatory neurotoxin, is involved in the pathogenesis of neurodegenerative processes. We investigated the role of QA in obesity-induced cognitive impairment and the beneficial effect of butyrate in counteracting impairments of cognition, neural morphology, and signaling. We show that in human obesity, there was a negative relationship between serum QA levels and cognitive function and decreased cortical gray matter. Diet-induced obese mice had increased QA levels in the cortex associated with cognitive impairment. At single-cell resolution, we confirmed that QA impaired neurons, altered the dendritic spine's intracellular signal, and reduced brain-derived neurotrophic factor (BDNF) levels. Using Caenorhabditis elegans models, QA induced dopaminergic and glutamatergic neuron lesions. Importantly, the gut microbiota metabolite butyrate was able to counteract those alterations, including cognitive impairment, neuronal spine loss, and BDNF reduction in both in vivo and in vitro studies. Finally, we show that butyrate prevented QA-induced BDNF reductions by epigenetic enhancement of H3K18ac at BDNF promoters. These findings suggest that increased QA is associated with cognitive decline in obesity and that butyrate alleviates neurodegeneration.


Asunto(s)
Disfunción Cognitiva , Enfermedades Neurodegenerativas , Ratones , Animales , Humanos , Ácido Quinolínico/farmacología , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Butiratos , Obesidad/tratamiento farmacológico , Obesidad/genética , Obesidad/complicaciones , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , Inflamación/complicaciones
8.
Zhongguo Zhong Yao Za Zhi ; 48(2): 492-506, 2023 Jan.
Artículo en Chino | MEDLINE | ID: mdl-36725239

RESUMEN

This study aimed to investigate the effective substances and mechanism of Yishen Guluo Mixture in the treatment of chronic glomerulonephritis(CGN) based on metabolomics and serum pharmacochemistry. The rat model of CGN was induced by cationic bovine serum albumin(C-BSA). After intragastric administration of Yishen Guluo Mixture, the biochemical indexes related to renal function(24-hour urinary protein, serum urea nitrogen, and creatinine) were determined, and the efficacy evaluations such as histopathological observation were carried out. The serum biomarkers of Yishen Guluo Mixture in the treatment of CGN were screened out by ultra-performance liquid chromatography-quadrupole time-of-flight/mass spectrometry(UPLC-Q-TOF-MS) combined with multivariate statistical analysis, and the metabolic pathways were analyzed. According to the mass spectrum ion fragment information and metabolic pathway, the components absorbed into the blood(prototypes and metabolites) from Yishen Guluo Mixture were identified and analyzed by using PeakView 1.2 and MetabolitePilot 2.0.4. By integrating metabolomics and serum pharmacochemistry data, a mathematical model of correlation analysis between serum biomarkers and components absorbed into blood was constructed to screen out the potential effective substances of Yishen Guluo Mixture in the treatment of CGN. Yishen Guluo mixture significantly decreased the levels of 24-hour urinary protein, serum urea nitrogen, and creatinine in rats with CGN, and improved the pathological damage of the kidney tissue. Twenty serum biomarkers of Yishen Guluo Mixture in the treatment of CGN, such as arachidonic acid and lysophosphatidylcholine, were screened out, involving arachidonic acid metabolism, glycerol phosphatide metabolism, and other pathways. Based on the serum pharmacochemistry, 8 prototype components and 20 metabolites in the serum-containing Yishen Guluo Mixture were identified. According to the metabolomics and correlation analysis of serum pharmacochemistry, 12 compounds such as genistein absorbed into the blood from Yishen Guluo Mixture were selected as the potential effective substances for the treatment of CGN. Based on metabolomics and serum pharmacochemistry, the effective substances and mechanism of Yishen Guluo Mixture in the treatment of CGN are analyzed and explained in this study, which provides a new idea for the development of innovative traditional Chinese medicine for the treatment of CGN.


Asunto(s)
Medicamentos Herbarios Chinos , Glomerulonefritis , Animales , Ratas , Ácido Araquidónico , Biomarcadores/sangre , Proteínas Sanguíneas , Cromatografía Líquida de Alta Presión , Creatinina , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Glomerulonefritis/sangre , Glomerulonefritis/tratamiento farmacológico , Glomerulonefritis/metabolismo , Metabolómica , Urea , Enfermedad Crónica , Modelos Animales de Enfermedad , Mezclas Complejas/farmacología , Mezclas Complejas/uso terapéutico
9.
Microbiome ; 11(1): 30, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36810115

RESUMEN

BACKGROUND: Gut homeostasis, including intestinal immunity and microbiome, is essential for cognitive function via the gut-brain axis. This axis is altered in high-fat diet (HFD)-induced cognitive impairment and is closely associated with neurodegenerative diseases. Dimethyl itaconate (DI) is an itaconate derivative and has recently attracted extensive interest due to its anti-inflammatory effect. This study investigated whether intraperitoneal administration of DI improves the gut-brain axis and prevents cognitive deficits in HF diet-fed mice. RESULTS: DI effectively attenuated HFD-induced cognitive decline in behavioral tests of object location, novel object recognition, and nesting building, concurrent with the improvement of hippocampal RNA transcription profiles of genes associated with cognition and synaptic plasticity. In agreement, DI reduced the damage of synaptic ultrastructure and deficit of proteins (BDNF, SYN, and PSD95), the microglial activation, and neuroinflammation in the HFD-fed mice. In the colon, DI significantly lowered macrophage infiltration and the expression of pro-inflammatory cytokines (TNF-α, IL-1ß, IL-6) in mice on the HF diet, while upregulating the expression of immune homeostasis-related cytokines (IL-22, IL-23) and antimicrobial peptide Reg3γ. Moreover, DI alleviated HFD-induced gut barrier impairments, including elevation of colonic mucus thickness and expression of tight junction proteins (zonula occludens-1, occludin). Notably, HFD-induced microbiome alteration was improved by DI supplementation, characterized by the increase of propionate- and butyrate-producing bacteria. Correspondingly, DI increased the levels of propionate and butyrate in the serum of HFD mice. Intriguingly, fecal microbiome transplantation from DI-treated HF mice facilitated cognitive variables compared with HF mice, including higher cognitive indexes in behavior tests and optimization of hippocampal synaptic ultrastructure. These results highlight the gut microbiota is necessary for the effects of DI in improving cognitive impairment. CONCLUSIONS: The present study provides the first evidence that DI improves cognition and brain function with significant beneficial effects via the gut-brain axis, suggesting that DI may serve as a novel drug for treating obesity-associated neurodegenerative diseases. Video Abstract.


Asunto(s)
Disfunción Cognitiva , Dieta Alta en Grasa , Ratones , Animales , Eje Cerebro-Intestino , Obesidad/microbiología , Propionatos , Citocinas/genética , Butiratos , Ratones Endogámicos C57BL
10.
Parasit Vectors ; 16(1): 65, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36782332

RESUMEN

BACKGROUND: Toxoplasma gondii (T. gondii) is a neuroinvasive parasite causing neuroinflammation, which in turn is associated with a higher risk for several psycho-behavioral disorders. There is an urgent need to identify drugs capable of improving cognitive deficits induced by T. gondii infection. ß-Glucan, an active ingredient in mushrooms, could significantly enhance immunity. However, the effects of ß-glucan against neuroinflammation and cognitive decline induced by T. gondii infection remain unknown. The present study aimed to investigate the neuroprotective effect of ß-glucan on goal-directed behavior of mice chronically infected by T. gondii Wh6 strain. METHODS: A mice model of chronic T. gondii Wh6 infection was established by infecting mice by oral gavage with 10 cysts of T. gondii Wh6. Intraperitoneal injection of ß-glucan was manipulated 2 weeks before T. gondii infection. Performance of the infected mice on the Y-maze test and temporal order memory (TOM) test was used to assess the goal-directed behavior. Golgi-Cox staining, transmission electron microscopy, immunofluorescence, real-time PCR and western blot assays were used to detect prefrontal cortex-associated pathological change and neuroinflammation. RESULTS: The administration of ß-glucan significantly prevented T. gondii Wh6-induced goal-directed behavioral impairment as assessed behaviorally by the Y-maze test and TOM test. In the prefrontal cortex, ß-glucan was able to counter T. gondii Wh6-induced degeneration of neurites, impairment of synaptic ultrastructure and decrease of pre- and postsynaptic protein levels. Also, ß-glucan significantly prevented the hyperactivation of pro-inflammatory microglia and astrocytes, as well as the upregulation of proinflammatory cytokines caused by chronic T. gondii Wh6 infection. CONCLUSIONS: This study revealed that ß-glucan prevents goal-directed behavioral impairment induced by chronic T. gondii infection in mice. These findings suggest that ß-glucan may be an effective drug candidate to prevent T. gondii-associated psycho-behavioral disorders including goal-directed behavioral injury.


Asunto(s)
Toxoplasma , Toxoplasmosis , beta-Glucanos , Animales , Ratones , Enfermedades Neuroinflamatorias , Objetivos , Toxoplasmosis/parasitología
11.
J Ethnopharmacol ; 298: 115570, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35868549

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: the fruit of Schisandra chinensis (Turcz.) Baill. (SC) is an important traditional Chinese herbal medicine, which has been widely used in traditional Chinese medicine (TCM) for treating intestinal diseases. It is also traditionally used as health product and medicine in Russia and other countries. However, the effect of SC ethanol extract on anti-ulcerative colitis (UC) has not been systematically studied yet. AIM OF THE STUDY: We investigated the protective effects and underlying action mechanisms of SC extract (SCE) for UC treatment. MATERIALS AND METHODS: An animal model of UC induced by dextran sulfate sodium (DSS) was established. After oral administration of SCE, the Disease Activity Index (DAI) was calculated, the length of colon measured, levels of proinflammatory factors determined, and histopathology carried out to assess the therapeutic efficacy of SCE on UC. The effects of SCE on the toll-like receptor 4/nuclear factor-kappa B/nucleotide-binding and oligomerization domain-like receptor family pyrin domain containing 3 inflammasome (TLR4/NF-κB/NLRP3 inflammasome) signaling pathway were evaluated by western blotting. High-throughput sequencing was done to reveal the effect of SCE on the change of the gut microbiota (GM) in mice with DSS-induced colitis. RESULTS: SCE significantly reduced the DAI score, restored colon-length shortening, and ameliorated colonic histopathologic injury in mice with DSS-induced colitis. SCE inhibited the inflammatory response by regulating the TLR4/NF-κB/NLRP3 inflammasome pathway in mice with UC. SCE also maintained gut barrier function by increasing the levels of zonula occludens (ZO)-1 and occludin. 16S rRNA sequencing showed that SCE could reverse the GM imbalance caused by UC. CONCLUSIONS: SCE can ameliorate DSS-induced colitis, and that its effects might be associated with suppression of the TLR4/NF-κB/NLRP3 inflammasome pathway and GM regulation, which may provide significant supports for the development of potential candidates for UC treatment.


Asunto(s)
Colitis Ulcerosa , Colitis , Microbioma Gastrointestinal , Schisandra , Animales , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/prevención & control , Colitis Ulcerosa/tratamiento farmacológico , Sulfato de Dextran/toxicidad , Inflamasomas/metabolismo , Ratones , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , ARN Ribosómico 16S , Receptor Toll-Like 4/metabolismo
12.
Food Nutr Res ; 662022.
Artículo en Inglés | MEDLINE | ID: mdl-35382382

RESUMEN

Background: Globally, obesity is a significant public problem, especially when aging. Sesamol, a phenolic lignan present in sesame seeds, might have a positive effect on high-fat diet (HFD)-induced obesity associated with aging. Objective: The purpose of current research study was to explore salutary effects and mechanisms of sesamol in treating alimentary obesity and associated metabolic syndrome in middle-aged mice. Methods: C57BL/6J mice aged 4-6 weeks and 6-8 months were assigned to the young normal diet group, middle-aged normal diet group, middle-aged HFD group, and middle-aged HFD + sesamol group. At the end of experiment, glucose tolerance test and insulin tolerance test were performed; the levels of lipids and oxidative stress-related factors in the serum and skeletal muscle were detected using chemistry reagent kits; lipid accumulation in skeletal muscle was observed by oil red O staining; the expressions of muscular glucose and lipid metabolism associated proteins were measured by Western blotting. Results: Sesamol decreased the body weight and alleviated obesity-associated metabolism syndrome in middle-aged mice, such as glucose intolerance, insulin resistance, dyslipidemia, and oxidative stress. Moreover, muscular metabolic disorders were attenuated after treatment with sesamol. It increased the expression of glucose transporter type-4 and down-regulated the protein levels of pyruvate dehydrogenase kinase isozyme 4, implying the increase of glucose uptake and oxidation. Meanwhile, sesamol decreased the expression of sterol regulatory element binding protein 1c and up-regulated the phosphorylation of hormone-sensitive lipase and the level of carnitine palmityl transferase 1α, which led to the declined lipogenesis and the increased lipolysis and lipid oxidation. In addition, the SIRT1/AMPK signaling pathway was triggered by sesamol, from which it is understood how sesamol enhances glucose and lipid metabolism. Conclusions: Sesamol counteracts on metabolic disorders of middle-aged alimentary obese mice through regulating skeletal muscle glucose and lipid metabolism, which might be associated with the stimulation of the SIRT1/AMPK pathway.

13.
Front Nutr ; 9: 848930, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35308288

RESUMEN

Background: Dietary fiber is fermented in the lower gastrointestinal tract, potentially impacting the microbial ecosystem and thus may improve elements of cognition and brain function via the gut-brain axis. ß-glucans, soluble dietary fiber, have different macrostructures and may exhibit different effects on the gut-brain axis. This study aimed to compare the effects of ß-glucans from mushroom, curdlan and oats bran, representing ß-(1,3)/(1,6)-glucan, ß-(1,3)-glucan or ß-(1,3)/(1,4)-glucan, on cognition and the gut-brain axis. Methods: C57BL/6J mice were fed with either control diet or diets supplemented with ß-glucans from mushroom, curdlan and oats bran for 15 weeks. The cognitive functions were evaluated by using the temporal order memory and Y-maze tests. The parameters of the gut-brain axis were examined, including the synaptic proteins and ultrastructure and microglia status in the hippocampus and prefrontal cortex (PFC), as well as colonic immune response and mucus thickness and gut microbiota profiles. Results: All three supplementations with ß-glucans enhanced the temporal order recognition memory. Brain-derived neurotrophic factor (BDNF) and the post-synaptic protein 95 (PSD95) increased in the PFC. Furthermore, mushroom ß-glucan significantly increased the post-synaptic thickness of synaptic ultrastructure in the PFC whilst the other two ß-glucans had no significant effect. Three ß-glucan supplementations decreased the microglia number in the PFC and hippocampus, and affected complement C3 and cytokines expression differentially. In the colon, every ß-glucan supplementation increased the number of CD206 positive cells and promoted the expression of IL-10 and reduced IL-6 and TNF-α expression. The correlation analysis highlights that degree of cognitive behavior improved by ß-glucan supplementations was significantly associated with microglia status in the hippocampus and PFC and the number of colonic M2 macrophages. In addition, only ß-glucan from oat bran altered gut microbiota and enhanced intestinal mucus. Conclusions: We firstly demonstrated long-term supplementation of ß-glucans enhanced recognition memory. Comparing the effects of ß-glucans on the gut-brain axis, we found that ß-glucans with different molecular structures exhibit differentia actions on synapses, inflammation in the brain and gut, and gut microbiota. This study may shed light on how to select appropriate ß-glucans as supplementation for the prevention of cognitive deficit or improving immune function clinically.

14.
J Agric Food Chem ; 70(7): 2253-2264, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35166533

RESUMEN

Obesity can evoke changes of skeletal muscle structure and function, which are characterized by the conversion of myofiber from type I to type II, leading to a vicious cycle of metabolic disorders. Reversing the muscle fiber-type conversion in obese states is a novel strategy for treating those with obesity. Sesamol, a food ingredient compound isolated from sesame seeds, exerted potential antiobesity effects. The present research aimed to explore the therapeutic effects of sesamol on obesity-related skeletal muscle-fiber-type conversion and elucidate the underlying molecular mechanisms through utilizing a high-fat-diet-induced obese C57BL/6J mice model and palmitic acid-exposed C2C12 myotubes. The results showed that sesamol attenuated obesity-related metabolic disturbances, elevated exercise endurance of obese mice, and decreased lipid accumulation and insulin resistance in skeletal muscle. After the treatment with sesamol, the muscular mitochondrial content and biogenesis were increased, accompanied by the enzyme activities and myosin heavy-chain isoform changed from type II fiber to type I fiber. Mechanistic studies revealed that the effects of sesamol on reversing skeletal muscle-fiber-type conversion in obese states were associated with the stimulation of the muscular sirtuin 1 (SIRT1)/AMP-activated protein kinase (AMPK) signal pathway, and these effects could be inhibited by a specific inhibitor of SIRT1, EX-527. In conclusion, our research provided novel evidence that sesamol could regulate myofiber-type conversion to treat obesity and obesity-related metabolic disorders by stimulating the muscular SIRT1/AMPK signal pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Sirtuina 1 , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Benzodioxoles , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Obesidad/metabolismo , Fenoles , Transducción de Señal , Sirtuina 1/genética , Sirtuina 1/metabolismo
15.
Zhongguo Zhong Yao Za Zhi ; 47(1): 188-202, 2022 Jan.
Artículo en Chino | MEDLINE | ID: mdl-35178926

RESUMEN

This study aims to study the effective substance and mechanism of Ziziphi Spinosae Semen extract in the treatment of insomnia based on serum metabolomics and network pharmacology. The rat insomnia model induced by p-chlorophenylalanine(PCPA) was established. After oral administration of Ziziphi Spinosae Semen extract, the general morphological observation, pentobarbital sodium-induced sleep test, and histopathological evaluation were carried out. The potential biomarkers of the extract in the treatment of insomnia were screened by ultra-high performance liquid chromatography-mass spectrometry(UHPLC-MS) combined with multivariate analysis, and the related metabolic pathways were further analyzed. The "component-target-pathway" network was constructed by ultra-high performance liquid chromatography coupled with quadrupole-Exactive mass spectrometry(UHPLC-Q-Exactive-MS/MS) combined with network pharmacology to explore the effective substances and mechanism of Ziziphi Spinosae Semen in the treatment of insomnia. The results of pentobarbital sodium-induced sleep test and histopathological evaluation(hematoxylin and eosin staining) showed that Ziziphi Spinosae Semen extract had good theraputic effect on insomnia. A total of 21 endogenous biomarkers of Ziziphi Spinosae Semen extract in the treatment of insomnia were screened out by serum metabolomics, and the metabolic pathways of phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, and nicotinate and nicotinamide metabolism were obtained. A total of 34 chemical constituents were identified by UHPLC-Q-Exactive-MS/MS, including 24 flavonoids, 2 triterpenoid saponins, 4 alkaloids, 2 triterpenoid acids, and 2 fatty acids. The network pharmacological analysis showed that Ziziphi Spinosae Semen mainly acted on target proteins such as dopamine D2 receptor(DRD2), 5-hydroxytryptamine receptor 1 A(HTR1 A), and alpha-2 A adrenergic receptor(ADRA2 A) in the treatment of insomnia. It was closely related to neuroactive ligand-receptor interaction, serotonergic synapse, and calcium signaling pathway. Magnoflorine, N-nornuciferine, caaverine, oleic acid, palmitic acid, coclaurine, betulinic acid, and ceanothic acid in Ziziphi Spinosae Semen may be potential effective compounds in the treatment of insomnia. This study revealed that Ziziphi Spinosae Semen extract treated insomnia through multiple metabolic pathways and the overall correction of metabolic disorder profile in a multi-component, multi-target, and multi-channel manner. Briefly, this study lays a foundation for further research on the mechanism of Ziziphi Spinosae Semen in treating insomnia and provides support for the development of innovative Chinese drugs for the treatment of insomnia.


Asunto(s)
Medicamentos Herbarios Chinos , Trastornos del Inicio y del Mantenimiento del Sueño , Ziziphus/química , Animales , Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos/química , Metabolómica , Farmacología en Red , Ratas , Semillas/química , Trastornos del Inicio y del Mantenimiento del Sueño/tratamiento farmacológico , Espectrometría de Masas en Tándem
16.
ACS Appl Mater Interfaces ; 14(2): 3363-3373, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-34985247

RESUMEN

Developing novel hybrid negative electrode materials with high specific capacity, rate capacitance, and long-term cycle stability is a key factor for pushing large-scale application of supercapacitors. However, construction of robust interfaces and low-crystalline active materials plays a crucial role in realizing the target. In this paper, a one-step phosphorization approach was employed to make low-crystalline Fe2P2O7 nanoplates closely bonded to N/P-co-doped graphene nanotubes (N/P-GNTs@b-Fe2P2O7) through interfacial chemical bonding. The N and P heteroatoms as substitutions for C in GNT skeletons can introduce rich electronic centers, which induces Fe2P2O7 to fix the surface of N/P-GNTs through Fe-N and Fe-P bonds as confirmed by the characterizations. Moreover, the low-crystalline active materials own a disordered internal structure and numerous defects, which not only endows with excellent conductivity but also provides many active sites for redox reactions. Benefiting from the synergistic effects, the prepared N/P-GNTs@b-Fe2P2O7 can not only deliver a high capacity of 257 mA h g-1 (927 F g-1) at 1 A g-1 but also present an excellent rate capability of 184 mA h g-1 (665 F g-1) at 50 A g-1 and outstanding cycle stability (∼90.6% capacity retention over 40,000 cycles). Furthermore, an asymmetric supercapacitor was assembled using the obtained N/P-GNTs@b-Fe2P2O7 as electrode materials, which can present the energy density as high as 83.3 W h kg-1 at 791 W kg-1 and long-term durability. Therefore, this strategy not only offers an effective pathway for achieving high-performance negative electrode materials but also lays a foundation for further industrialization.

17.
Foods ; 12(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36613373

RESUMEN

Listeria monocytogenes is a ubiquitous organism that can be found in food-related environments, and sanitizers commonly prevent and control it. The aim of this study is to perform a meta-analysis of L. monocytogenes response to sanitizer treatments. According to the principle of systematic review, we extracted 896 records on the mean log-reduction of L. monocytogenes from 84 publications as the dataset for this study. We applied a mixed-effects model to describe L. monocytogenes response to sanitizer treatment by considering sanitizer type, matrix type, biofilm status, sanitizer concentration, treatment time, and temperature. Based on the established model, we compared the response of L. monocytogenes under different hypothetical conditions using forest plots. The results showed that environmental factors (i.e., sanitizer concentration, temperature, and treatment time) affected the average log-reduction of L. monocytogenes (p < 0.05). L. monocytogenes generally exhibited strong resistance to citric acid and sodium hypochlorite but had low resistance to electrolyzed water. The planktonic cells of L. monocytogenes were less resistant to peracetic acid and sodium hypochlorite than the adherent and biofilm cells. Additionally, the physical and chemical properties of the contaminated or inoculated matrix or surface also influenced the sanitizer effectiveness. This review may contribute to increasing our knowledge of L. monocytogenes resistance to sanitizers and raising awareness of appropriate safety precautions.

18.
Nutrients ; 13(12)2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34960036

RESUMEN

Chronic high-fat diet (HFD) is associated with the onset and progression of hepatic steatosis, and oxidative stress is highly involved in this process. The potential role of sesamol (SEM) against oxidative stress and inflammation at the transcriptional level in a mice model of hepatic steatosis is not known. In this study, we aimed to investigate the scavenging effects of SEM towards reactive oxygen generated by lipid accumulation in the liver of obese mice and to explore the mechanisms of protection. Markers of oxidative stress, vital enzymes involved in stimulating oxidative stress or inflammation, and nuclear transcription of Nrf2 were examined. Our results showed that SEM significantly inhibited the activity of the HFD-induced hepatic enzymes CYP2E1 and NOX2, associated with oxidative stress generation. Additionally, SEM reversed HFD-induced activation of NF-κB, a redox-sensitive transcription factor, and attenuated the expression of hepatic TNF-α, a proinflammatory molecule. Moreover, SEM enhanced HFD-induced hepatic Nrf2 nuclear transcription and increased the levels of its downstream target genes Ho1 and Nqo1, which indicated antiinflammation and antioxidant properties. Our study suggests that chronic HFD led to hepatic steatosis, while SEM exhibited protective effects on the liver by counteracting the oxidative stress and inflammation induced by HFD. The underlying mechanism might involve multiple pathways at the transcriptional level; the antioxidant defense mechanism was in partly mediated by the upregulation of Nrf2.


Asunto(s)
Benzodioxoles/farmacología , Dieta Alta en Grasa/efectos adversos , Inflamación/prevención & control , Hígado/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Estrés Oxidativo/efectos de los fármacos , Fenoles/farmacología , Animales , Antioxidantes/farmacología , Biomarcadores/sangre , Peso Corporal , Ingestión de Energía , Inflamación/inducido químicamente , Masculino , Malondialdehído/sangre , Ratones , Ratones Endogámicos C57BL , Superóxido Dismutasa/sangre
19.
Microbiome ; 9(1): 223, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34758889

RESUMEN

BACKGROUND: Cognitive impairment, an increasing mental health issue, is a core feature of the aging brain and neurodegenerative diseases. Industrialized nations especially, have experienced a marked decrease in dietary fiber intake, but the potential mechanism linking low fiber intake and cognitive impairment is poorly understood. Emerging research reported that the diversity of gut microbiota in Western populations is significantly reduced. However, it is unknown whether a fiber-deficient diet (which alters gut microbiota) could impair cognition and brain functional elements through the gut-brain axis. RESULTS: In this study, a mouse model of long-term (15 weeks) dietary fiber deficiency (FD) was used to mimic a sustained low fiber intake in humans. We found that FD mice showed impaired cognition, including deficits in object location memory, temporal order memory, and the ability to perform daily living activities. The hippocampal synaptic ultrastructure was damaged in FD mice, characterized by widened synaptic clefts and thinned postsynaptic densities. A hippocampal proteomic analysis further identified a deficit of CaMKIId and its associated synaptic proteins (including GAP43 and SV2C) in the FD mice, along with neuroinflammation and microglial engulfment of synapses. The FD mice also exhibited gut microbiota dysbiosis (decreased Bacteroidetes and increased Proteobacteria), which was significantly associated with the cognitive deficits. Of note, a rapid differentiating microbiota change was observed in the mice with a short-term FD diet (7 days) before cognitive impairment, highlighting a possible causal impact of the gut microbiota profile on cognitive outcomes. Moreover, the FD diet compromised the intestinal barrier and reduced short-chain fatty acid (SCFA) production. We exploit these findings for SCFA receptor knockout mice and oral SCFA supplementation that verified SCFA playing a critical role linking the altered gut microbiota and cognitive impairment. CONCLUSIONS: This study, for the first time, reports that a fiber-deprived diet leads to cognitive impairment through altering the gut microbiota-hippocampal axis, which is pathologically distinct from normal brain aging. These findings alert the adverse impact of dietary fiber deficiency on brain function, and highlight an increase in fiber intake as a nutritional strategy to reduce the risk of developing diet-associated cognitive decline and neurodegenerative diseases. Video Abstract.


Asunto(s)
Disfunción Cognitiva , Microbioma Gastrointestinal , Animales , Disfunción Cognitiva/etiología , Dieta/efectos adversos , Microbioma Gastrointestinal/fisiología , Hipocampo , Ratones , Ratones Endogámicos C57BL , Microglía , Proteómica
20.
Neurotoxicology ; 87: 231-242, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34688786

RESUMEN

BACKGROUND: Haloperidol is a commonly used antipsychotic drug and may increase neuronal oxidative stress associated with the side effects, including tardive dyskinesia and neurite withdraw. Autophagy plays a protective role in response to the accumulated reactive oxygen species (ROS) induced mitochondria damage. Resveratrol is an antioxidant compound having neuroprotective effects; however, it is unknown if resveratrol may stimulate autophagy and decrease mitochondria damage induced by haloperidol. HYPOTHESIS: We hypothesis that resveratrol stimulates the autophagic process and protects mitochondria lesion induced by haloperidol. METHODS: MitoSOX™ Red Mitochondrial Superoxide Indicator and MitoTracker™ Green FM staining were used to measure the amount of the mitochondria ROS production and mitochondria mass in human SH-SY5Y cells treated with haloperidol and/or resveratrol. Autophagic related dyes and Western blot were applied to study the autophagic process and related protein expression. Besides, tandem monomeric mRFP-GFP-LC3 was used to investigate the fusion of autophagosome and lysosome. Transmission electron microscopy was used to investigate the mitochondrial and autophagic ultrastructures with or without haloperidol and resveratrol treatment. RESULTS: Haloperidol administration significantly increased mitochondria ROS and mitochondrial mass, indicating the increase of mitochondria dysfunction. Although haloperidol increased the autophagosomes and lysosome formation, the autophagosome-lysosome fusion and degradation were impaired. This was because we found an increased p62 after haloperidol treatment, an indication of autophagy incompletion. Importantly, resveratrol promoted the degradation of p62, upregulated the formation of autophagolysosome, and reversed haloperidol-induced mitochondria damage. CONCLUSION: These results collectively suggest that resveratrol may be introduced as a protective compound against haloperidol-induced mitochondria impairment and aberrant autophagy.


Asunto(s)
Autofagia/efectos de los fármacos , Haloperidol/toxicidad , Mitocondrias/efectos de los fármacos , Resveratrol/farmacología , Autofagosomas/efectos de los fármacos , Western Blotting , Haloperidol/antagonistas & inhibidores , Humanos , Lisosomas/efectos de los fármacos , Microscopía Electrónica de Transmisión , Células Neoplásicas Circulantes , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...